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A Finite Element Method for the Stationary 
Stokes Equations Using Trial Functions Which 

Do Not Have to Satisfy div u = 0 

By Richard S. Falk* 

Abstract. By adding a term to the variational equations, we derive a new finite ele- 

ment method for the stationary Stokes equations which eliminates the divv - 0 re- 

striction on the trial functions. The method is described using continuous piece- 

wise linear functions, and the optimal 0(h) order of convergence estimate is derived 

for the error in the H1(2) norm. 

1. Introduction. A major obstacle in using finite element methods to approxi- 

mate the solution of Stokes equations is the construction of trial functions satisfying 

either zero divergence or some other condition which approximates it. We present in 

this note a method for avoiding this problem by adding a term to the variational 

equations. The weighted method produced is then shown to give the optimal 0(h) 

order of convergence estimate when applied using continuous, piecewise linear trial 

functions. 

For simplicity we confine ourselves here to the approximation of the stationary 

Stokes equations, i.e. 

Problem (P). Find u (ul, . . ., UN) and p defined on 2 such that 

-vAu + gradp=f in 2, divu = O in 2, u-=O on a2, 

where u is the fluid velocity, p is the pressure, f are the body forces per unit mass 

and v > 0 is the dynamic viscosity. 

For other finite element methods for this problem, see the excellent bibliography 

in Temam [71. Some other recent methods not listed there are those of [1] -[5]. 

2. Notation. We shall consider Problem (P) in the case where 2 is a bounded 

convex domain in RN with C2 boundary. The results of this paper will also hold for 

2 a convex polygon. 

Denote by (u, v) the L2(Q) inner product and by IlIvlo the norm (v, v)?2. For 

m a nonnegative integer we denote by Hm(2) (Ho' (2)) the completion of CO() 

(CJ'(2)) in the norm 

Io0s l 
Dc' V 

For m a negative integer we define H'(2) as the completion of C'(2) with respect 

to the norm 
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VIm = sup (V, W) WC-C (Q) IIWII_m' 
We will also be using the inner product in Hm (E2) which we denote by (u, v)m. 

For vector valued functions v = (v1, . . ., VN) we let [Hm(E2)]N be the space of 
v with components vi E Hm(E2). The scalar product and norm in [Hm (E2)] N are given 

by 

N N \1/2 

(u, v)m = E (us, vi)m and llVIlm E lvilI), respectively. 
i= 1 / 

Finally, for convenience we introduce the bilinear form 

N N auk avk 
a (u,v) =v ZdZx 

k=1 1= IQ i aX XI 

defined on [H(Q2)]N x [Hd(2)] N and the corresponding norm IIUII = a(u, u). 

3. Approximate Problem and Error Estimates. We begin our discussion with a 

statement of a regularity result for the solution of Problem (P) and a description of 
the subspaces we will use in its approximation. 

LEMMA 1 (TEMAM [7]). If Q2 is an open bounded set of class C2 and if f be- 

longs to [L2(Q2)]N, then the solution u, p of Problem (P) satisfies u E [H2(Q)] N, 

p E H 1 (2) and II U ll2 + 11PI1 < C(V, V ) llfll . (We have assumed that p has been 
normalized so that fn pdx = 0.) 

We remark that a similar result has been proved by Kellogg and Osborn in [6] 

for Q a polygonal domain. 

Since Q2 is assumed convex, the finite dimensional subspaces we will use in the 

approximation of Problem (P) can be described as follows. Let h, 0 < h < 1, be a 

parameter, and for each value of h, let E2h be a polygon inscribed in Q2 with all its 

vertices lying on M2 and each side of the polygon of length less than or equal to h. 

Let Ah(2h) be a regular triangularization of Qh and Ah(E2) an extension of the tri- 

angularization Ah(2h) to cover Q. Set Vh = {Vh: Vh is continuous on Q2 and linear on 

each triangle of Ah(Q)} and V/?={Vh E Vh: Vh = 0 in Q -Q 

Then the following approximation results are satisfied by Vh and Vh for some 

constant C independent of u and h. 

For u E H2(Q2), there exists a vh E Vh such that 

(*) lu'- VhllO + hllu - Vhlll < Ch2 1IU112. 

If u E H2 (2) nl Ho (2), then (*) is satisfied for a vh E V 

From the point of view of approximation theoretic results like (*), one might 

like to formulate an approximation scheme for Problem (P) of the form: 

Problem (P'). Find Uh h [VhIN such that a(uh, vh) + 'yh2(divuh, divvh) 1 = 

(f, Vh) for all vh E [VOlN (' > 0 a constant). 

For this type of scheme it follows in a very straightforward manner that 

(1) llu - UhIIE + h-1 Ildivuhil 1 

< C{llu - VhIIE + hllplll + h 1lldiv(u - Vh)ll_1} 
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for all Vh V [VI N. Since 11 div(u - vh)ll < 11 u - Vh 110, it follows immediately from 

(1) and (*) that 11 u - Uh IIE < Ch . 
The obvious trouble with this scheme is that (div uh, div vh) 1 is not a computable 

quantity (in a practical sense). The central idea of this note is to show how this 
quantity can be replaced by a computable one, while still retaining the same 0(h) 
convergence rate. 

To do so, we define a bilinear form b(w, z) = h2(divw, divz) + (Qh(w), divz) 
where Qh(w) e Vh satisfies 

(2) (Qh(w), h)1 = (divw, 4h) for all Ph E Vh. 

Using this form, we define another approximate problem as follows: 
Problem (Ph)* Find Uh - [VO]N such that 

(3) a(uh, Vh) + yh b(uh, Vh) = (f, vh) for all Vh E [v,?IN ('y> 0 a constant). 

Then the main result is: 
THEOREM 1. Let u and Uh be the respective solutions of Problems (P) and (Ph)* 

Then if f C [L2(E2)] N, there exists a constant C independent of h and f such that 

IIu - Uh IIE + Ildiv Uh 110 < Chll f I0. - 

In order to prove Theorem 1, we first establish some properties of the bilinear 
form b(w, z). 

LEMMA 2. If w C [H1 (E2)]N, then 

Ildivw12 < Cb(w, w) = C[h2 lldivwll ? IIQh(w)I 12 

for some constant C independent of w. 
Proof. Let Q(w) be the solution in H1(E2) of (Q(w), i)1 = (divw, 4) for all 

Then by a well-known regularity result for elliptic boundary value problems, 

(4) Q(w) C H2(E2) and IIQ(w)112 < CIldivwllo 

for some constant C independent of w. By (2), 

(Q(W) - Qh(W), lPh)1 = 0 for all lPh 
- 

Vh. 

Hence, 

IIQ(W) - Qh(W)II1 < IIQ(W) Phlll (for all Ph E Vh) 

< Ch Ildivwllo (by (*) and (4)). 
Now 

Ildivwll-1 = 11Q(w)111 < IIQ(W) - Qh(W)I1 + IIQh(W)I1 

< Ch Ildivwllo + IIQh(w)I 1- 
Hence, 

Ildivw11_2 < C[h2 lldivwllg + IWQh(w)112] 

= Cb(w, w) (since IIQh(W)|11 = (Qh(w), divw)). 
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Remark. From Lemma (2) it easily follows that Problem (Ph) has a unique 
solution. 

ILMMA 3. 

b(w, z) < ?4b(w, w) + h2j1divz12I + IIdivz12E. 

Proof. 

b(w, z) = h2(divw, divz) + (Qh(w), divz) 

S h2jjdivwjj0 11divzI10 + IIQh(w)jjj1 ldivzll1 

? ?4h2 Ildiv wII2 + h2 Ildiv z112 + 1/4 IIQh(w)I12 + 1IdivzI121 

1/4?b(w, w) + h211divzII2 + IIdivzI1.- 

We now prove Theorem 1. 
Proof. Since u solves Problem (P), it follows easily that 

a(u, v) + yh-22b(u, v) = (f, v) - (grad p, v) for all v E [HO )I]N. 

Since uh solves Problem (Ph), we may subtract Eq. (3) from the above to get 

a(u-uh,vh) +U y 2b(u-u V,Vh) =-(gradp, vh) for all vh E [VhIN. 

It follows easily that 

I|U-UhJJ2 +'yh/2b(u-uh, u-uh) 

= a(u - UhU - Vh) + 'yh2b(u - U - Vh)-(gradp, Vh -Uh)- 

Now 

-(gradp, vh - uh) = (p, div(vh - uh)) = (p, div(vh - u)) + (p, div(u - uh)) 

s llplll [Ildiv(vh - u)JL- + Ildiv(u - Uh)JI-I 1 

? CllpllI [Ildiv(vh - u)ll_l + {b(u - Uh, U - Uh)}/] (by Lemma 2) 

? Ch2 IIpII2 + h02 1ldiv(vh - U)II_2 

+ 1/4rh-2b(u - uhU - Uh) (using the arithmetic-geometric mean inequality). 

By Lemma 3, 

yhl2b (u - U - Vh) 

< Yl4h-2b(u - Uh, U - Uh) + 'ylldiv(u - vh)110 + yh-2 lldiv(u - vh)1I12, 

and using the Schwarz inequality, 

a(u - Uh, U-Vh) /IhllU -Uh IIE + ?1lU - VhlIE. 

Hence, after collecting terms, we obtain 

Ilu - UhII + 'hy2b(u -Uh, U - Uh) 

< C[I|U - Vhllk + Ildiv(u - vh)11o + h-211div(u - vh)1121 + h2j1p|J21 

for all vh E [Vh, N. 

Since 11 div(u - vh) L_1 ? S 1u - v. II1, it follows immediately from (*) and Lemma 1 
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that 

IIu-UhIIE + ?/h1 {b(u-Uh, u-uh)}/2 S Chllfll0 

and hence, using the definition of b(w, z), that 

IU- UhIIE + lldivuh l < C?hllf 110. 

4. Final Comments. In the preceding we have presented a method for the 
approximation of.the stationary Stokes equations which yields optimal O(h) conver- 
gence using piecewise linear elements with no zero divergence restriction. For the 
elimination of the constraint and the advantage of using such simple finite elements, 
one must pay a price. In this case it is the added complexity of the linear system 
which must be solved. 

Finally, we note that it is possible to formulate an optimal order method for 
finite elements of order r > 2 by replacing the term yhh-2b(uh, Vh) by 

E h 22bm(Uh, Vh), 
m=2 

where 

bm(w, z) = h2m-2(divw, divz) + (Qm(w), divz) 

and Qhm(w) satisfies 

(5) (Qh(W), W 'h)m-1 = (div w, lPh) for all 4h E Sh -2m2 

where Sm-l,2m-2 is a finite dimensional subspace of Hm-l (Q) with the property 
that for u E H2m2( ), there exists uPh h ,2m2 such that 

IIU - 4hllm-l < ChmlllU112m-2. 

However, because the auxiliary problems (5) increase in order, this does not seem to 
be a practical approach. 
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